If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2-24t+180=0
a = -16; b = -24; c = +180;
Δ = b2-4ac
Δ = -242-4·(-16)·180
Δ = 12096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12096}=\sqrt{576*21}=\sqrt{576}*\sqrt{21}=24\sqrt{21}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-24\sqrt{21}}{2*-16}=\frac{24-24\sqrt{21}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+24\sqrt{21}}{2*-16}=\frac{24+24\sqrt{21}}{-32} $
| 2x-3=2x+11 | | 12u=6 | | 2(-2)+y=-10 | | m^2+5m-2=-6 | | -8(x+8)=-4+2x | | v=3.14×36×20 | | 5=2u | | 3x2+-8x+4=0 | | -4f+9=8f+9 | | 48/x+10+3x=10+6x | | v=3.14×16×12 | | 5(2x+5)=6x-10-x | | ((120+x)25)/2=95 | | (y+5)(y+6=0 | | 2(1/2)=x-1(1/4) | | 2x^2+26x+30=0 | | 3.0x=2.4 | | 4(2v-8)=-12+4v | | 3x+x+7=-x+16 | | 3x-11=-2x+11 | | 2(x-4)=10x-8-8x | | (1.5)x+4=13 | | 3/4(5x-6)=1/2(4x+5) | | 4n^=70 | | 67-4x=3x+1 | | y=-5(-6)+3 | | 21x^2-58x-40=0 | | -4x+8(-5x+3)=288 | | 8x-(6x-9)+(3x-2)=4-(-7x-8) | | 35x-2(3)=7 | | 4=2(y-5)= | | 7/8k-24=25 |